Finding integers from group orbits

Faculty Mentor: Xin Zhang

Team Leader: Junxian Li

Scholars: Jake Shin, Yike Xu, Catherine Zhang, Xin Zhang

In this project, we study the "local - global" principal for integers coming from group orbits. Take a vector $v_0 \in \mathbb{Z}^2$, and Γ a subgroup of $SL_2(\mathbb{Z})$, we are interested in a subset of integers $\mathscr{S} := \langle w_0, \Gamma \cdot v_0 \rangle$ from the group orbit $\mathscr{O} := \Gamma \cdot v_0$. An easier *admissible* set \mathscr{A} gives all the *local* obstruction \mathscr{S} . The "*local* - *global*" principal says that almost all admissible integers are in \mathscr{S} . This question naturally arise from the study of curvatures of integral *Apollonian* gasket or *Zaremba*'s conjecture on denominators of continued fraction expansions.

We investigate the "local - global" principal for several examples of $\Gamma < SL_2(\mathbb{Z})$. When the "*cirital exponent*", which measure the growth of the subgroup is not too small, we indeed see "local - global" principal holds numerically.

