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1 INTRODUCTION

The goal of this project is to study the local-global phenomenon arising from group orbits. It

turns out that many arithmetic problems can be translated into studying the orbit of some

special group. For example, the study of Apollonian circle packings. It is proved by Pappus

that if we start with 4 mutually tangent circles with integer curvatures, then all the circles

in the packing will have integer curvatures, which is known as an integral Apollonian circle

packing. It is natural to ask what integers are the curvatures of Apollonian circle packings.

This question in fact can be answered by studying the orbit of a thin subgroup of Γ< SL4(Z).

Another example comes a conjecture of Zaremba when studying the continued fraction

expansions of fractions. In 1972, he conjectured that every natural number is the denominator

of a reduced fraction whose partial quotients areabsolutely bounded. That is, there exists

some absolute C > 1 so that for each d , there is some (b,d) = 1, so that

b

d
= a0 +

1

a1 +
1

a2 +
1

. . . +
1

ak

with max a j ≤ C . This can also be turned into a problem of studying finitely generated

subgroupsΓ of PSL2(Z), where Γ=ΓC =<
(

0 1

1 a

)
: a ∈C >, where C is a set of finitely many

integers.

In our setting, we study the orbits subgroups Γ of GLd (Z). Given a vector v0 ∈Zd , we are

interested in the group orbit:

O :=Γ · v0
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and the set of represented integers:

S :=< w0,O >⊂Z,

An easier set to study is called the admissible set defined as

A = {n ∈Z : n ∈S (mod q)} for any q ∈N.

The local global conjecture states that :

n ∈A ⇐⇒ n ∈S

Strong Approximation Property of Γ implies that ∃ Z ∈Z, such that

n ∈A ⇐⇒ n ∈A (modZ ),

and we call Z the local obstruction. This allows us to find the admissible set by testing local

obstructions at finitely many places.

2 EXPERIMENTS

For this project, we want to study a weaker version of the local global conjecture, which is the

density 1 conjecture. Denote

rm := |S ∩ [−m,m]|
|A ∩ [−m,m]|

Then the density 1 conjecture says that

rm → 1, as m →∞.

2.1 Subgroups of SL2(Z)

We first consider subgroups of SL2(Z) and investigated the behavior of rm in the following

ways:

1 Fix a class of subgroup and vary w0. It would be interesting to answer the following:

– How does rm change for various w0?

– How does rm differ for groups that are conjugate?
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We investigated G1 = 〈
(

1 0

3 1

)
,

(
1 3

0 1

)
〉 and G2 = 〈

(
2 3

3 5

)
,

(
1 3

0 1

)
〉. They are conjugate to

each other in SL2(Z). For each group, we have 3 choices of w0 to compare. The graph

of rm is shown in Figure 1 and Z denote the local obstruction. We notice that for most

Figure 1: Graphs of rm for m ≤ 10000 of G1 and G2 with various w0.

of the cases, rm → 1 as m →∞. Even though G1 and G2 are conjugate, the convergent

rate of rm is different for them and G2 has a lower growth rate.

2 Different Groups with fixed w0: We investigated 6 groups and the graph of rm is shown

in Figure 2. Due to the limitation of our algorithms, we compute rm for m up to 40000.

It can be seen that the behaviour differs from group to group very much.

Figure 2: Graphs of rm for m ≤ 40000 of Different Groups with w0 (2,5)

– For G1 =<
(

2 3

3 5

)
,

(
1 9

0 1

)
,

(
1 0

3 1

)
>, rm → 0.9996, as m → 40000.

– For G2 =<
(

1 7

0 1

)
,

(
3 7

2 5

)
>, rm → 0.2327, as m → 40000.
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G1: δ≈ 0.7644 G3: δ≈ 0.5391. δ≈ 0.4823.
G2: δ≈ 0.5582 G4: δ≈ 0.5709 G6: δ≈ 0.5391

Table 1: numerical data for ritical exponent

– For G3 =<
(

1 7

0 1

)
,

(
2 3

3 5

)
>, rm → 0.3995, as m → 40000.

– For G4 =<
(

3 7

2 5

)
,

(
2 3

3 5

)
>, rm → 0.674, as m → 40000.

– For G5 =<
(
−2 5

−3 7

)
,

(
1 0

9 1

)
>, rm → 0.5410, as m → 40000.

– For G6 =<
(

2 3

3 5

)
,

(
1 3

0 1

)
>, rm → 0.9903, as m → 40000.

2.2 Critical exponent

The differences of the limit of rm is due to the different structure of these subgroups, especially

the growth property of the group which is connected to the notion of critical exponent. The

Critical Exponent δ of γ can be defined as follows: let

N (T ) := #{γ ∈Γ : ‖γ‖ ≤ T },

then it was known that

N (T ) ∼CΓT 2δ.

The critical exponent controls the rate of growth of N (T ). And it is believed that if δ ≥ 1
2 ,

then the local-global conjecture should hold. Based on the results of our experiment, the

lower the δ is, the longer time it takes for rm to approach 1, given rm → 1. This suggests

that if the conjecture is true, it is difficult to prove the conjecture when δ is really small. We

also computed the critical exponent for the groups we investigated above and the graph of
log(N (T ))

2logT with respect to T is shown in Figure 3. And numerical data is in Table 1.
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Figure 3: Critical exponent for different groups.

2.3 Subgroups of SL2(Z[i ])

In the case of SL2(Z[i ]), we experimented with two subgroups H1

<
(

1 3

0 1

)
,

(
1 0

3 1

)
,

(
1 3i

0 1

)
,

(
1 0

3i 1

)
>

and H2

<
(

1 3

0 1

)
,

(
1 0

3 1

)
,

(
1 i

0 1

)
,

(
1 0

i 1

)
> .

The integers are from the quadratic form

c2
1 + c2

2 +d 2
1 +d 2

2

for a complex matrix (
a1i +a2 b1i +b2

c1i + c2 d1i +d2

)
.

We have the graphs for the density shown in Figure 4 and the critical exponents as shown in Figure 5

3 FUTURE DIRECTIONS

3.1 Theoretical

For further theoretical investigations, we would like to answer the following questions.

• For a fixed subgroupΓ, what is the connection between w0 and rm? How is the local obstruction

related to the rm?
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Figure 4: The density 1 conjecture for H1 and H2.

Figure 5: Critical Exponent for H1 and H2.
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• For different subgroups, how does δ affect rm?

3.2 Computational

Due to the limitation of the algorithm we used, we can’t go very far, especially for the complex matrices.

There are several computational aspects that we may consider.

• Improvement our computational algorithm to make it more efficient.

• Efficient memory use and large scale computation.

• Other algorithms of computing critical exponent of a subgroup.
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